
1 | P a g e D e p t o f C S E , M B I T S

INTERPROCESS COMMUNICATION (IPC)

 Processes executing concurrently in OS may be either

independent processes or cooperating processes.

 A process is independent if it cannot affect or be affected

by the other processes executing in the system. Any

process that does not share data with any other process is

independent.

 A process is cooperating if it can affect or be affected by

the other processes executing in the system. Clearly, any

process that shares data with other processes is a

cooperating process.

 There are 4 reasons for providing an environment that

allows process cooperation:

1. Information sharing. Since several users may be

interested in the same piece of information

2. Computation speedup. If we want a particular task to

run faster, we must break it into subtasks, each of which

will be executing in parallel with the others. (only if the

computer has multiple processing cores)

3. Modularity. We may want to construct the system in a

modular fashion, dividing the system functions into

separate processes or threads

4. Convenience. Even an individual user may work on

many tasks at the same time. For instance, a user may

be editing, listening to music, and compiling in parallel.

2 | P a g e D e p t o f C S E , M B I T S

 Cooperating processes require an interprocess

communication (IPC) mechanism that will allow them to

exchange data and information.

 There are two fundamental models of interprocess

communication: shared memory and message passing.

 In the shared-memory model, a region of memory that is

shared by cooperating processes is established. Processes

can then exchange information by reading and writing

data to the shared region.

 In the message-passing model, communication takes

place by means of messages exchanged between the

cooperating processes.

 Both of the models are common in OS, and many systems

implement both.

 Message passing is useful for exchanging smaller

amounts of data.

 Message passing is also easier to implement in a

distributed system than shared memory.

 Shared memory can be faster than message passing, since

message-passing systems are typically implemented using

system calls and thus require the more time-consuming

task of kernel intervention.

 In shared-memory systems, system calls are required only

to establish shared memory regions. Once shared memory

is established, all accesses are treated as routine memory

accesses, and no assistance from the kernel is required.

3 | P a g e D e p t o f C S E , M B I T S

 Shared memory suffers from cache coherency issues,

which arise because shared data migrate among the

several caches.

 As the number of processing cores on systems increases,

it is possible that we will see message passing as the

preferred mechanism for IPC.

SHARED-MEMORY SYSTEMS

 IPC using shared memory requires communicating

processes to establish a region of shared memory.

 A shared-memory region resides in the address space of

the process creating the shared-memory segment.

4 | P a g e D e p t o f C S E , M B I T S

 Other processes that wish to communicate using this

shared-memory segment must attach it to their address

space.

 Normally, OS tries to prevent one process from accessing

another process’s memory.

 Shared memory requires that two or more processes agree

to remove this restriction.

 They can then exchange information by reading and

writing data in the shared areas.

 The form of the data and the location are determined by

these processes and are not under the control of OS.

 The processes are also responsible for ensuring that they

are not writing to the same location simultaneously.

 Producer–consumer problem is the best example for

shared memory.

 A producer process produces information that is

consumed by a consumer process. Both uses the same

data buffer.

MESSAGE-PASSING SYSTEMS

 A message-passing facility provides at least two

operations: send(message) and receive(message)

 Messages sent by a process can be either fixed or

variable in size.

 If only fixed-sized messages can be sent, the system-level

implementation is straightforward.

5 | P a g e D e p t o f C S E , M B I T S

 Variable-sized messages require a more complex system

level implementation

 If processes P and Q want to communicate, they must

send messages to and receive messages from each other

 A communication link must exist between them. This is

a logical link rather than physical link.

 Here are several methods for logically implementing a

link and the send()/receive() operations:

 Direct or indirect communication (Naming)

 Synchronous or asynchronous communication

(Synchronization)

 Automatic or explicit buffering (Buffering)

Naming

• Under direct communication, each process that wants to

communicate must explicitly name the recipient or sender

of the communication.

• The send() and receive() primitives are defined as:

 send(P, message) - Send a message to process P.

 receive(Q, message) - Receive a message from

process Q.

• A communication link has the following properties:

 A link is established automatically between every

pair of processes that want to communicate.

 A link is associated with exactly two processes.

 Between each pair of processes, there exists exactly

one link.

6 | P a g e D e p t o f C S E , M B I T S

• This scheme exhibits symmetry in addressing; that is,

both the sender process and the receiver process must

name the other to communicate.

• A variant of this scheme employs asymmetry in

addressing.

• Here, only the sender names the recipient; the recipient is

not required to name the sender.

• In this scheme, the send() and receive() primitives are

defined as follows:

 send(P, message) - Send a message to process P.

 receive(id, message) - Receive a message from

any process.

• The disadvantage in both of these schemes (symmetric

and asymmetric) is the limited modularity. Changing the

identifier of a process may necessitate examining all other

process definitions.

• All references to the old identifier must be found, so that

they can be modified to the new identifier.

• With indirect communication, the messages are sent to

and received from mailboxes, or ports.

• A mailbox can be viewed abstractly as an object into

which messages can be placed by processes and from

which messages can be removed.

• Each mailbox has a unique identification (usually an

integer).

7 | P a g e D e p t o f C S E , M B I T S

• A process can communicate with another process via a

number of different mailboxes, but two processes can

communicate only if they have a shared mailbox.

• The send() and receive() primitives are defined as

follows:

 send(A, message) - Send a message to mailbox A.

 receive(A, message) - Receive a message from

mailbox A.

• Communication link has the following properties:

 A link is established between a pair of processes

only if both members of the pair have a shared

mailbox.

 A link may be associated with more than two

processes.

 Between each pair of communicating processes, a

number of different links may exist, with each link

corresponding to one mailbox.

• A mailbox may be owned either by a process or by the

OS.

• If the mailbox is owned by a process, then the mailbox

will be a part of the address space of that process

• Owner can only receive messages through this mailbox

and the user can only send messages to the mailbox.

• When a process that owns a mailbox terminates, the

mailbox disappears.

• Any process that subsequently sends a message to this

mailbox must be notified that the mailbox no longer

exists.

8 | P a g e D e p t o f C S E , M B I T S

• In contrast, a mailbox that is owned by the OS has an

existence of its own.

• It is independent and is not attached to any particular

process.

• The OS must provide a mechanism that allows a process

to do the following:

 Create a new mailbox.

 Send and receive messages through the mailbox.

 Delete a mailbox.

• The process that creates a new mailbox is that mailbox’s

owner by default.

• Initially, the owner is the only process that can receive

messages through this mailbox.

• However, the ownership and receiving privilege may be

passed to other processes through appropriate system

calls.

Synchronization

• Message passing may be either blocking or nonblocking

• Also known as synchronous and asynchronous.

 Blocking send. The sending process is blocked until

the message is received by the receiving process or

by the mailbox.

 Nonblocking send. The sending process sends the

message and resumes operation.

 Blocking receive. The receiver blocks until a

message is available.

9 | P a g e D e p t o f C S E , M B I T S

 Nonblocking receive. The receiver retrieves either a

valid message or a null.

• Different combinations of send() and receive() are

possible.

• When both send() and receive() are blocking, we have a

rendezvous between the sender and the receiver.

Buffering

• Whether communication is direct or indirect, messages

exchanged by communicating processes reside in a

temporary queue.

• Basically, such queues can be implemented in three ways:

1. Zero capacity. The queue has a maximum length of

zero; thus, the link cannot have any messages waiting

in it. In this case, the sender must block until the

recipient receives the message.

2. Bounded capacity. The queue has finite length n;

thus, at most n messages can reside in it. If the queue

is not full when a new message is sent, the message is

placed in the queue and the sender can continue

execution without waiting. The link’s capacity is

finite, however. If the link is full, the sender must

block until space is available in the queue.

3. Unbounded capacity. The queue’s length is

potentially infinite; thus, any number of messages can

wait in it. The sender never blocks. The zero-capacity

case is sometimes referred to as a message system

10 | P a g e D e p t o f C S E , M B I T S

with no buffering. The other cases are referred to as

systems with automatic buffering.

